Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Anal Chem ; 95(21): 8332-8339, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2324375

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is used in microfluidics owing to its biocompatibility and simple fabrication. However, its intrinsic hydrophobicity and biofouling inhibit its microfluidic applications. Conformal hydrogel-skin coating for PDMS microchannels, involving the microstamping transfer of the masking layer, is reported herein. A selective uniform hydrogel layer with a thickness of ∼1 µm was coated in diverse PDMS microchannels with a resolution of ∼3 µm, maintaining its structure and hydrophilicity after 180 days (6 months). The wettability transition of PDMS was demonstrated through the switched emulsification in a flow-focusing device (water-in-oil [pristine PDMS] to oil-in-water [hydrophilic PDMS]). A one-step bead-based immunoassay was performed to detect the anti-severe acute respiratory syndrome coronavirus 2 IgG using a hydrogel-skin-coated point-of-care platform.


Subject(s)
COVID-19 , Microfluidics , Humans , Hydrogels , Dimethylpolysiloxanes/chemistry , Wettability , Water
2.
Biosensors (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2305462

ABSTRACT

Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Hydrogels , Food Safety , DNA , Biosensing Techniques/methods
3.
Int J Pharm ; 638: 122941, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2295765

ABSTRACT

The recent Covid-19 pandemics led to the increased use of facial masks, which can cause skin lesions due to continuous pressure, tension and friction forces on the skin. A preventive approach is the inclusion of dressings between the face and the mask. However, there are still uncertainties about the protective effect of dressings and whether their use compromises the efficiency of masks. The current study aimed to develop and test the efficacy of a gelatin-based hydrogel patch to be placed between the mask and the facial area. Design of Experiment with a Quality by Design approach tools were used in the patch development and in vitro characterization was performed through rheological evaluation, ATR-FTIR and molecular docking studies. Furthermore, tribology studies were performed to test the patch performance. The results showed that the addition of excipients enhanced gelation temperature, elasticity and adhesiveness parameters. The interactions between excipients were confirmed by ATR-FTIR and molecular docking. The tribology assay revealed similar friction values at room and physiological temperature, and when testing different skin types. In conclusion, the physical properties and the performance evaluation reported in this study indicate that this innovative film-forming system can be used to prevent skin lesions caused by the continuous use of protective masks.


Subject(s)
COVID-19 , Skin Diseases , Humans , COVID-19/prevention & control , Masks , Gelatin , Hydrogels , Excipients , Molecular Docking Simulation
4.
Nat Mater ; 22(7): 818-831, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2288902

ABSTRACT

RNA-based therapeutics have shown tremendous promise in disease intervention at the genetic level, and some have been approved for clinical use, including the recent COVID-19 messenger RNA vaccines. The clinical success of RNA therapy is largely dependent on the use of chemical modification, ligand conjugation or non-viral nanoparticles to improve RNA stability and facilitate intracellular delivery. Unlike molecular-level or nanoscale approaches, macroscopic hydrogels are soft, water-swollen three-dimensional structures that possess remarkable features such as biodegradability, tunable physiochemical properties and injectability, and recently they have attracted enormous attention for use in RNA therapy. Specifically, hydrogels can be engineered to exert precise spatiotemporal control over the release of RNA therapeutics, potentially minimizing systemic toxicity and enhancing in vivo efficacy. This Review provides a comprehensive overview of hydrogel loading of RNAs and hydrogel design for controlled release, highlights their biomedical applications and offers our perspectives on the opportunities and challenges in this exciting field of RNA delivery.


Subject(s)
COVID-19 , Hydrogels , Humans , Hydrogels/chemistry , RNA , COVID-19/therapy , Drug Delivery Systems
5.
J Nanobiotechnology ; 21(1): 74, 2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2268650

ABSTRACT

Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, ß-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1ß, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of ß-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.


Subject(s)
Cancer Vaccines , Neoplasms , beta-Glucans , Humans , Animals , Mice , Adjuvants, Immunologic/pharmacology , Neoplasms/drug therapy , beta-Glucans/pharmacology , Immunization , Hydrogels
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2267175

ABSTRACT

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Subject(s)
Hydrogels , Wound Infection , Humans , Pseudomonas aeruginosa , Antimicrobial Peptides , Wound Infection/microbiology , Bandages , Anti-Bacterial Agents
7.
Sensors (Basel) ; 23(6)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2255158

ABSTRACT

Wearables have been applied in the field of fitness in recent years to monitor human muscles by recording electromyographic (EMG) signals. Understanding muscle activation during exercise routines allows strength athletes to achieve the best results. Hydrogels, which are widely used as wet electrodes in the fitness field, are not an option for wearable devices due to their characteristics of being disposable and skin-adhesion. Therefore, a lot of research has been conducted on the development of dry electrodes that can replace hydrogels. In this study, to make it wearable, neoprene was impregnated with high-purity SWCNTs to develop a dry electrode with less noise than hydrogel. Due to the impact of COVID-19, the demand for workouts to improve muscle strength, such as home gyms and personal trainers (PT), has increased. Although there are many studies related to aerobic exercise, there is a lack of wearable devices that can assist in improving muscle strength. This pilot study proposed the development of a wearable device in the form of an arm sleeve that can monitor muscle activity by recording EMG signals of the arm using nine textile-based sensors. In addition, some machine learning models were used to classify three arm target movements such as wrist curl, biceps curl, and dumbbell kickback from the EMG signals recorded by fiber-based sensors. The results obtained show that the EMG signal recorded by the proposed electrode contains less noise compared to that collected by the wet electrode. This was also evidenced by the high accuracy of the classification model used to classify the three arms workouts. This work classification device is an essential step towards wearable devices that can replace next-generation PT.


Subject(s)
COVID-19 , Humans , Electromyography/methods , Pilot Projects , Algorithms , Hydrogels , Machine Learning
8.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2253707

ABSTRACT

Organ-on-A-chip (OoAC) devices are miniaturized, functional, in vitro constructs that aim to recapitulate the in vivo physiology of an organ using different cell types and extracellular matrix, while maintaining the chemical and mechanical properties of the surrounding microenvironments. From an end-point perspective, the success of a microfluidic OoAC relies mainly on the type of biomaterial and the fabrication strategy employed. Certain biomaterials, such as PDMS (polydimethylsiloxane), are preferred over others due to their ease of fabrication and proven success in modelling complex organ systems. However, the inherent nature of human microtissues to respond differently to surrounding stimulations has led to the combination of biomaterials ranging from simple PDMS chips to 3D-printed polymers coated with natural and synthetic materials, including hydrogels. In addition, recent advances in 3D printing and bioprinting techniques have led to the powerful combination of utilizing these materials to develop microfluidic OoAC devices. In this narrative review, we evaluate the different materials used to fabricate microfluidic OoAC devices while outlining their pros and cons in different organ systems. A note on combining the advances made in additive manufacturing (AM) techniques for the microfabrication of these complex systems is also discussed.


Subject(s)
Biocompatible Materials , Microfluidics , Humans , Microfluidics/methods , Biocompatible Materials/chemistry , Microphysiological Systems , Hydrogels/chemistry , Microtechnology , Printing, Three-Dimensional
9.
Nat Mater ; 22(7): 903-912, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2233197

ABSTRACT

The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Mice , SARS-CoV-2 , Hydrogels , Primates
10.
Biomater Sci ; 11(6): 2065-2079, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2231703

ABSTRACT

Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.


Subject(s)
COVID-19 , Hydrogels , Mice , Animals , Hydrogels/pharmacokinetics , SARS-CoV-2 , Broadly Neutralizing Antibodies , Drug Delivery Systems , Polymers , Antibodies
11.
Sci Rep ; 13(1): 2163, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2227499

ABSTRACT

Presented here is a magnetic hydrogel particle enabled workflow for capturing and concentrating SARS-CoV-2 from diagnostic remnant swab samples that significantly improves sequencing results using the Oxford Nanopore Technologies MinION sequencing platform. Our approach utilizes a novel affinity-based magnetic hydrogel particle, circumventing low input sample volumes and allowing for both rapid manual and automated high throughput workflows that are compatible with Nanopore sequencing. This approach enhances standard RNA extraction protocols, providing up to 40 × improvements in viral mapped reads, and improves sequencing coverage by 20-80% from lower titer diagnostic remnant samples. Furthermore, we demonstrate that this approach works for contrived influenza virus and respiratory syncytial virus samples, suggesting that it can be used to identify and improve sequencing results of multiple viruses in VTM samples. These methods can be performed manually or on a KingFisher automation platform.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2 , Nanopore Sequencing/methods , Hydrogels , High-Throughput Nucleotide Sequencing/methods , Magnetic Phenomena
12.
Sci Rep ; 13(1): 46, 2023 01 02.
Article in English | MEDLINE | ID: covidwho-2186066

ABSTRACT

Three-dimensional (3D) quantitative phase imaging (QPI) enables long-term label-free tomographic imaging and quantitative analysis of live individual bacteria. However, the Brownian motion or motility of bacteria in a liquid medium produces motion artifacts during 3D measurements and hinders precise cell imaging and analysis. Meanwhile, existing cell immobilization methods produce noisy backgrounds and even alter cellular physiology. Here, we introduce a protocol that utilizes hydrogels for high-quality 3D QPI of live bacteria maintaining bacterial physiology. We demonstrate long-term high-resolution quantitative imaging and analysis of individual bacteria, including measuring the biophysical parameters of bacteria and responses to antibiotic treatments.


Subject(s)
Hydrogels , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Bacteria
13.
J Am Chem Soc ; 144(44): 20137-20152, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2185542

ABSTRACT

Mucus hydrogels at biointerfaces are crucial for protecting against foreign pathogens and for the biological functions of the underlying cells. Since mucus can bind to and host both viruses and bacteria, establishing a synthetic model system that can emulate the properties and functions of native mucus and can be synthesized at large scale would revolutionize the mucus-related research that is essential for understanding the pathways of many infectious diseases. The synthesis of such biofunctional hydrogels in the laboratory is highly challenging, owing to their complex chemical compositions and the specific chemical interactions that occur throughout the gel network. In this perspective, we discuss the basic chemical structures and diverse physicochemical interactions responsible for the unique properties and functions of mucus hydrogels. We scrutinize the different approaches for preparing mucus-inspired hydrogels, with specific examples. We also discuss recent research and what it reveals about the challenges that must be addressed and the opportunities to be considered to achieve desirable de novo synthetic mucus hydrogels.


Subject(s)
Hydrogels , Mucus , Hydrogels/chemistry , Mucus/chemistry , Bacteria/metabolism
14.
Biosens Bioelectron ; 220: 114898, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2120366

ABSTRACT

Analysis of cytokines levels in human serum is critical as it can be a "symptom diagnostic biomarker" in COVID-19, giving real-time information about human health status. Here, we present the construction and performance of a low-price immunosensor (∼US$0.428 per test) based on microfluidic paper-based system to detect cytokine for predicting the health status of COVID-19 patients. Interleukin-6 (IL-6) was selected as the detection model for the close relationship between IL-6 and COVID-19. The assay, which we integrated into foldable paper system, leverages the magnetic immunoassay, the streptavidin-horseradish peroxidase (HRP) associated with tetramethyl benzidine/hydrogen peroxide (TMB/H2O2) to amplify the signal for electrochemical readout. To improve the sensitivity of cytokine detection, a hybrid of gold nanoparticles (AuNPs) and polypyrrole (PPy) hydrogel was modified on the working electrode to increase the conductivity and improve the electron transfer rate. With our prototypic origami paper-based immunosensor operated in differential pulse voltammetry (DPV) mode, we achieved excellent results with a dynamic range from 5 to 1000 pg/mL and a lower detection limit (LOD) of 0.654 pg/mL. Furthermore, we evaluated the capability of the clinical application of the proposed immunosensor using human serum samples from a hospital. The results indicate that our proposed immunosensor has great potential in early diagnosing high-risk COVID-19 patients.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Humans , Cytokines , Hydrogels , Polymers , Gold , COVID-19/diagnosis , Interleukin-6 , Hydrogen Peroxide , Immunoassay , Pyrroles
15.
Sci Adv ; 8(43): eabq6900, 2022 10 28.
Article in English | MEDLINE | ID: covidwho-2088382

ABSTRACT

Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme-cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.


Subject(s)
Bioprinting , COVID-19 , Humans , Bioprinting/methods , Hydrogels , Gelatin , Microfluidics , Tissue Engineering/methods , Printing, Three-Dimensional , Alginates , Tissue Scaffolds
16.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2066117

ABSTRACT

Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.


Subject(s)
Bioprinting , Blood Substitutes , Alginates , Blood Vessel Prosthesis , Gelatin , Hydrogels/pharmacology , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
17.
Anal Chim Acta ; 1231: 340439, 2022 Oct 23.
Article in English | MEDLINE | ID: covidwho-2041446

ABSTRACT

In this work, personal glucose meter (PGM) as a portable electrochemical device was utilized for sensitive detection of non-glucose targets: N-gene and PCB77, respectively. DNA hydrogel, which can respond to CRISPR/Cas system, was prepared for label-free encapsulating invertase. In the presence of targets, the repeated sequence for the activation of Cas12a was obtained due to the performance of RCA. Unlike "one-to-one" recognition, activated Cas12a can efficiently cleave multiple single-stranded linker DNAs on DNA hydrogels, thus releasing many invertase that can be used for PGM detection. With the amplification of RCA and CRISPR/Cas system, high detection sensitivity can be obtained even using portable PGM. The detection limits for N-gene and PCB77 were 2.6 fM and 3.2 × 10-5 µg/L, respectively, with high specificity and good practical application performance. The developed biosensor can be used for online monitoring with the merit of low cost, easy operation and can be used for various targets analysis.


Subject(s)
Biosensing Techniques , Glucose , Blood Glucose Self-Monitoring , CRISPR-Cas Systems , DNA/genetics , DNA, Single-Stranded , Glucose/analysis , Hydrogels , beta-Fructofuranosidase/genetics
18.
J Hazard Mater ; 442: 130050, 2023 01 15.
Article in English | MEDLINE | ID: covidwho-2041932

ABSTRACT

With rapid growing of environmental contact infection, more and more attentions are focused on the precise and absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus on cold chain foods via point-of-care test (POCT). In this work, we propose a hydrogel-mediated reverse transcription loop-mediated isothermal amplification (RT-LAMP) for ultrafast and absolute quantification of SARS-CoV-2. Cross-linked hydrogel offers opportunities for digital single molecule amplification in nanoconfined spaces, facilitating the virus lysis, RNA reverse transcription and amplification process, which is about 3.4-fold faster than conventional bulk RT-LAMP. Ultrafast quantification of SARS-CoV-2 is accomplished in 15 min without virus pre-lysis and RNA extraction. The sensitivity can accurately quantify SARS-CoV-2 down to 0.5 copy/µL. Furthermore, the integrated system has an excellent specificity, reproducibility and storage stability, which can be also used to test SARS-CoV-2 on various cold chain fruits. The developed ultrafast and simple hydrogel RT-LAMP will be an enormous potential for surveillance of virus or other hazardous microbes in environmental, agricultural and food industry.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reproducibility of Results , Hydrogels , Sensitivity and Specificity , Nucleic Acid Amplification Techniques , RNA
19.
Biosensors (Basel) ; 12(8)2022 Aug 20.
Article in English | MEDLINE | ID: covidwho-2023161

ABSTRACT

Responsive two-dimensional photonic crystal (2DPC) hydrogels have been widely used as smart sensing materials for constructing various optical sensors to accurately detect different target analytes. Herein, we report photonic hydrogel aptasensors based on aptamer-functionalized 2DPC poly(acrylamide-acrylic acid-N-tert-butyl acrylamide) hydrogels for facile, label-free and colorimetric detection of lysozyme in human serum. The constructed photonic hydrogel aptasensors undergo shrinkage upon exposure to lysozyme solution through multi-factors cooperative actuation. Here, the specific binding between the aptamer and lysozyme, and the simultaneous interactions between carboxyl anions and N-tert-butyl groups with lysozyme, increase the cross-linking density of the hydrogel, leading to its shrinkage. The aptasensors' shrinkage decreases the particle spacing of the 2DPC embedded in the hydrogel network. It can be simply monitored by measuring the Debye diffraction ring of the photonic hydrogel aptasensors using a laser pointer and a ruler without needing sophisticated apparatus. The significant shrinkage of the aptasensors can be observed by the naked eye via the hydrogel size and color change. The aptasensors show good sensitivity with a limit of detection of 1.8 nM, high selectivity and anti-interference for the detection of lysozyme. The photonic hydrogel aptasensors have been successfully used to accurately determine the concentration of lysozyme in human serum. Therefore, novel photonic hydrogel aptasensors can be constructed by designing functional monomers and aptamers that can specifically bind target analytes.


Subject(s)
Colorimetry , Hydrogels , Acrylamides , Colorimetry/methods , Humans , Hydrogels/chemistry , Muramidase , Photons
20.
Eye Contact Lens ; 48(9): 362-368, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1992379

ABSTRACT

OBJECTIVE: To assess the effect of commonly used contact lens disinfectants against severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). METHODS: The efficacy of five disinfectant solutions against SARS-CoV-2 was tested in the presence and absence of contact lenses (CLs). Three types of unused CLs (hard gas permeable, soft hydrogel, and soft silicone hydrogel) and worn silicone hydrogel CLs were tested. Contact lenses were infected with SARS-CoV-2 and disinfected at various times, with and without rubbing and rinsing, as per manufacturer's instructions. Reverse-transcriptase polymerase chain reaction (RT-PCR) and viability polymerase chain reaction (PCR) were applied to detect SARS-CoV-2 RNA and viral infectivity of SARS-CoV-2, respectively. RESULTS: In the presence of SARS-CoV-2-infected CLs, no SARS-CoV-2 RNA could be detected when disinfectant solutions were used according to the manufacturer's instructions. When SARS-Co-V2-infected CLs were disinfected without the rub-and-rinse step, SARS-CoV-2 RNA was detected at almost each time interval with each disinfecting solution tested for both new and worn CLs. In the absence of CLs, viable SARS-CoV-2 was detected with all disinfectant solutions except Menicon Progent at all time points. CONCLUSIONS: Disinfectant solutions effectively disinfect CLs from SARS-CoV-2 if manufacturer's instructions are followed. The rub-and-rinse regimen is mainly responsible for disinfection. The viability PCR may be useful to indicate potential infectiousness.


Subject(s)
COVID-19 , Contact Lenses, Hydrophilic , Disinfectants , COVID-19/prevention & control , Contact Lens Solutions/pharmacology , Disinfectants/pharmacology , Humans , Hydrogels , RNA , SARS-CoV-2 , Silicones
SELECTION OF CITATIONS
SEARCH DETAIL